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1. Introduction 

An attempt at interpretating a high-dimensional data (HDD) structure* typically necessitates 

reduction by (1) feature extraction (FE) and/or (2) feature selection (FS) of that most predictive for 

a given problem.  Usually, humans best understand HDD when it is presented graphically as two-

dimensional (2-D)/three-dimensional (3-D) object(s) (1).  For more than three-dimensions, the 

human visual system/brain combination usually becomes less effective quite quickly (an 

estimation of how we actually reconstruct the third dimension was done at the Max Planck 

Campus in Tübingen, Germany, January 2012) (2).  Our brain is amazingly good at recognizing 

objects under a large number of variations (3).  Applying an FE irreversibly transforms data 

semantics, but the underlying topology can be further examined.  On the other hand, an FS 

approach for display preserves the meaning of selected data, but plotting a subset may be 

misrepresentative of the HDD.  Further research of FEs, FSs, and possibly a hybrid FE/FS for 

dimensionality reduction (DR) continues for optimal data visualization in the knowledge 

discovery process.  Here, however, we report only on those FEs, both linear and nonlinear, that 

have been considered.† 

Visualization/visual analytics (VA) for a structure in HDD space (d) involves re-embedding to a 

lower-dimensional space, i.e., a 2-D/3-D Euclidean space.  The goal of a DR approximation is to 

preserve the structure as much as possible when mapping from d to 2-D/3-D.  The result should be 

representative of the original data so there is no loss of information.  The intrinsic dimension (P) is 

the minimum number of parameters necessary to account for observed properties in the original 

data (P < d) and reveals topological structure.  This is a requirement for the re-embedding:  

topological properties must be preserved when going from d to D.   Ideally, D = P.   

Topology is an area of mathematics where the concern is not representing an object (or structure) 

in space but the connectivity, which must not be altered.  In other words, twisting, deforming, 

and/or stretching are allowed but not tearing.  As an example, a circle in 2-D is topologically 

equivalent to an ellipse. 

In general, DRs try to eliminate any redundancy that may exist when projecting from d to 2-D/3-D.  

In figure 1, the first two approximations, principal component analysis and classical metric 

multidimensional scaling, are a linear DR (LDR).  An LDR is based on a linear combination of 

                                                 
*The data is assumed to lie near or on a Riemannian manifold and is treated as a kind of object in space. 
†Note that only FE is addressed here and, thus, will be treated as synonymous with DR unless stated otherwise.  DR is usually 

defined as both FE and FS (see http://dictionary.sensagent.com). 
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the feature data.  LDRs keep similar data points close together (distance preserving) when 

mapping from d to D.  However, they cannot find curved manifolds* since they are based on a 

Euclidean distance.   

A nonlinear DR (NLDR) approximation, which is also called a manifold
*
 learner, preserves 

geodesic distances along the manifold—linear or nonlinear (see figure 1 for a comparison 

between Euclidean and geodesic distance).  NLDRs include nonmetric multidimensional scaling 

(MDS), Isomap, locally linear embedding, Laplacian eigenmaps, stochastic neighbor embedding 

/t-distributed SNE (SNE/t-SNE), and neighbor retrieval visualizer/t-distributed NeRV 

(NeRV/t-NeRV) (see figure 2).†  Most papers for an NLDR approximation demonstrate the 

algorithm using an artificial dataset, such as the Swiss roll or S-curve, and not for real-world 

data (4).   

 

 

Figure 1.  Some FEs for HDD. 

                                                 
*A manifold is locally Euclidean but may be globally curved.  For example, the Earth is spherical in shape (global) but 

appears to be flat (local) to the human eye. 
†A student-t distribution variant, in general, tries to create separation between natural clusters to alleviate the crowding 

problem. 

 Linear approximation
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 classical metric multidimensional scaling (CMDS)
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 nonmetric MDS (MDS)

 Isomap

2010

 principal component analysis (PCA)

 locally linear embedding (LLE)

Source:  John A. Lee and Michel Verleysen

Universite catholique de Louvain,

Louvain-La-Neuve, Belgium (2011)

http://jds2011.tn.refer.org/PdfInvites/Lee.pdf

 http://www.cs.nyu.edu/~roweis/lle/

 Laplacian eigenmaps (LE)

 stochastic neighbor embedding (SNE)/

t-distributed SNE (t-SNE)

 neighbor retrieval visualizer (NeRV)/

t-distributed NeRV (t-NeRV)

 http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for

_Dimensionality_Reduction.html

 http://research.ics.tkkfi/mi/software/dredviz
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Figure 2.  Comparison of Euclidean vs. geodesic distance.  LDRs use metric based on the Euclidean 

distance between two points, while the NLDRs are based on geodesic distance.  An NLDR 

successfully unrolls the curved manifold, whereas an LDR fails.  

That same research paper
 
(5) suggests that manifold learners may not be the best DRs for data 

visualization.  The last two methods for NLDR in figure 1, namely SNE/t-SNE and NeRV 

/t-NeRV, are NLDRs that have been used with real-world data and are specifically designed for 

data visualization.  Real-world data is usually highly curved but can be described by a reduced 

number of features.   

2. Feature Extraction for Data Visualization 

Recent research of FE for visualizing HDD structures states that this differs from applying 

previous manifold learners (or NLDRs) (1).  Manifold learning, in most cases, was successfully 

done for an artificial dataset such as the Swiss roll.  But further work by van der Maaten (3, 6) at 

Tilburg University resulted in a new technique, called t-distributed stochastic neighbor 

embedding (t-SNE), for visualization of real-world HDD.  In particular, van der Maaten used 

five real datasets in his dissertation:  (1) MNIST hand-written digits (7); (2) Olivetti face data 

Euclidean distance

Geodesic distance

Euclidean distance - distance

through the embedding space

geodesic distance - distance 

along the curved manifold

Euclidean distance

geodesic distance
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(8); (3) the COIL-20 dataset; (4) word-features dataset; and (5) a Netflix dataset.*  Although the 

manifold learners are invaluable conceptually, they are not the best for data visualization/VA. 

In fact, a technical paper (4) in late 2011 from Aalto University’s School of Science states that 

DR for data visualization is different from learning manifolds.  The resulting NeRV/t-NeRV 

software includes a localized MDS.†  Also note that SNE/t-SNE are special cases of NeRV when 

λ = 1 (see the equation in reference 4). 

 

3. Conclusions and Future Work 

Research continues at the U.S. Army Research Laboratory for a means of using intelligence and 

HDD to gain insight in the knowledge discovery process and prevent terrorist activity from 

occurring.  The distribution of data is not necessarily a geometrical locus but close to some 

manifold.  Although FE application of a DR transforms the data semantics, the underlying 

topology can be further examined.  The particular FE we are considering is NeRV/t-NeRV, 

which is a DR specifically for data visualization. 

DR for data visualization can be achieved in one of two ways:  FS or FE.  Currently, we are 

researching fuzzy set theory (FST) and rough set theory (RST).  Possibly, a hybrid FST/RST and 

NeRV/t-NeRV is being considered.  Any continuous computation must be transformed to a 

discrete space for raster display. 

 

                                                 
*Note that van der Maaten presents the MATLAB implementations for many of the DRs (see http://homepage.tudelft.nl 

/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html). 
†The dimensionality reduction software for information visualization from Aalto University is available at http://research.ics 

.tkk.fi/mi/software/dredviz/. 
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List of Symbols, Abbreviations, and Acronyms 

2-D two dimensional  

3-D three dimensional  

d data space 

D reduced Euclidean dimension 

DR dimensionality reduction 

FE feature extraction  

FS feature selection 

FST fuzzy set theory 

HDD high-dimensional data 

LDR linear dimensionality reduction 

MDS multidimensional scaling 

MNIST database of handwritten digits from NIST 

NeRV neighbor retrieval visualizer 

NLDR nonlinear dimensionality reduction 

P intrinsic dimension 

RST rough set theory 

SNE stochastic neighbor embedding 

t-NeRV t-distributed neighbor retrieval visualizer 

t-SNE t-distributed stochastic neighbor embedding 

VA visual analytics 

Y embedding space 
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